MALLA REDDY ENGINEERING COLLEGE FOR WOMEN (Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified) Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JANUARY-2024 ANALOG ELECTRONICS

(EEE)

[Time: 3 Hours]

PART – A

[Max. Marks: 60] (10x 1 = 10M)

1M BTL1

Note: 1. This Part consists of 10 QUESTIONS2. Answer All Questions. Each question carries 1 Mark

1.	А	Define Clipper?
	В	List out various types of Biasing?

	Define Chipper	11/1	DILI
В	List out various types of Biasing?	1M	BTL2
С	Define Transconductance?	1M	BTL1
D	Recall the small signal equivalent circuit MOSFET.	1M	BTL2
E	List out various types of multi stage amplifiers.	1M	BTL1
F	Define Cross over distortion.	1M	BTL2
G	What is the concept of Feedback?	1M	BTL1
Н	List out Various types oscillators?	1M	BTL2
Ι	Recall various Op-Amp Characteristics.	1M	BTL1
J	Define Slew rate?	1M	BTL2
	C D E F G	BList out various types of Biasing?CDefine Transconductance?DRecall the small signal equivalent circuit MOSFET.EList out various types of multi stage amplifiers.FDefine Cross over distortion.GWhat is the concept of Feedback?HList out Various types oscillators?IRecall various Op-Amp Characteristics.	BList out various types of Biasing?1MCDefine Transconductance?1MDRecall the small signal equivalent circuit MOSFET.1MEList out various types of multi stage amplifiers.1MFDefine Cross over distortion.1MGWhat is the concept of Feedback?1MHList out Various types oscillators?1MIRecall various Op-Amp Characteristics.1M

PART - B

 $(5 \times 10 = 50M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Explain about the working of PN diode?	5M	BTL2
2.B	Summarize the working of Clippers.	5M	BTL2
	(OR)		
3.	Analyze the Input and Output characteristics of CE Configuration.	10M	BTL4

SECTION - II

4.	Explain about Common Drain amplifier with neat sketches.	10M	BTL2
	(OR)		
5.A	Analyze the structure of MOSFET with neat sketches.	5M	BTL4
5.B	Summarize about the Switching action MOSFET.	5M	BTL2

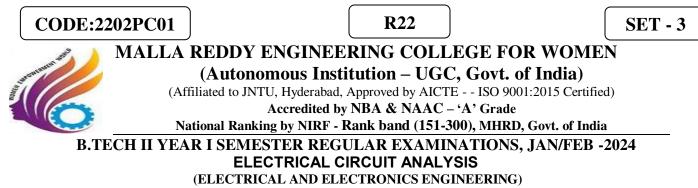
SECTION - III

6.	Analyze the working of Two stage RC coupled amplifier with relevant expressions	10M	BTL4
----	---	-----	------

CODE: 2202PC03

(OR)

R22


	SECTION – IV		
8.A	Summarize about voltage-series feedback amplifier.	5M	BTL2
8.B	Determine the gain, input and output impedances of a voltage series feedback amplifier having A=-300, R_i =1.5 K Ω , Ro= 50 K Ω and β =0.04.	5M	BTL5

	(OR)		
9.	Explain about RC Phase shift Oscillator and derive the expression for frequency of oscillations.	10M	BTL2

	SECTION – V		
10.	Summarize about DC characteristics of Op-Amp with necessary expressions.	10M	BTL2
	(OR)		
11.	Explain about Inverting and Non-Inverting amplifiers using Op-Amp with their gain expressions.	10M	BTL2

SET - 2

[Time: 3 Hours]

PART – A

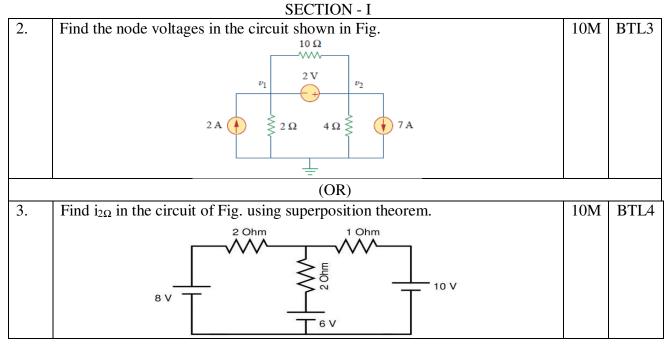
[Max. Marks: 60]

(10x 1 = 10M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer All Questions. Each question carries 1 Mark.

1	Α	Restate Norton theorem	1M	BTL2	
	В	Illustrate super mesh and give an example	1M	BTL3	
	С	Outline the term 'time constant' of the RC transient circuit and its expression	1M	BTL2	
	D	Differentiate forced response and free response	1M	BTL2	
	Е	Show the illustration of RLC series circuit and impedance expression of it	1M	BTL2	
	F	Interpret the understanding on RMS value of a sine wave	1M	BTL3	
	G	Review the term poles and state its use in electrical network	1M	BTL2	
	Н	List the difference between time response and frequency response of an electrical circuit	1M	BTL2	
	Ι	Interpret the various types of two port network parameters	1M	BTL2	
	J	Draw the impedance triangle and mention all its parameters	1M	BTL2	


PART – B

 $(5 \times 10 = 50M)$

Note: 1. This Part consists of 5 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - II

CODE:2202PC01 R22		S	ET - 3
4.	A step DC voltage is applied to a series RL Circuit at $t = 0$. Develop the expression for current through inductor for $t=0$ and sketch the responses. Assume zero initial conditions.	10M	BTL4
	(OR)		
5.	The switch in the below figure has been in position a for a long time, At $t = 4$ s the switch is moved to position b and left there. Determine v(t) at $t = 10$ s. 80 Ω 24 V 0.1 F v(t) 20 Ω	10M	BTL4
	SECTION - III		
6.	A balanced delta-connected load has a phase current $I_{AC}=10\angle -30^{\circ}A$: i. Determine the three-line currents assuming that the circuit operates in the positive phase sequence. ii. Calculate the load impedance if the line voltage is $V_{AB}=110\angle 0^{\circ}V$	10M	BTL3
	(OR)		<u> </u>
7.	A balanced star-connected load absorbs a total power of 5 KW at a leading power factor of 0.6 when connected to a line voltage of 240 V. Find the total complex power of load.	10M	BTL4
	SECTION – IV	n	
8.	Define Transfer function and write its significance. Determine the transfer function $H(s) = V_0(s) / I_0(s)$ of the circuit shown in Fig.	10M	BTL4
		1014	
9.	In the circuit of Fig. R = 2 Ω , L = 1mH and C = 0.4 μ F. (i) Find the resonant frequency and the half-power frequencies. (ii) Calculate the quality factor and bandwidth. (iii) Determine the amplitude of the current at ω_0 , ω_1 and ω_2 .	10M	BTL4
	SECTION – V	4 0 3 -	
10.	Define transmission parameters and write its significance. Explain the procedure and obtain the transmission parameters of a two port network.	10M	BTL4
11.	(OR) Find the hybrid parameters for the two-port network of Fig.	10M	BTL4
11.	Find the hybrid parameters for the two-port network of Fig. $ \begin{array}{c} 2 \Omega \\ 3 \Omega \\ 6 \Omega \\ 6 \Omega \\ 0 \end{array} $	10101	DIL4

___***____

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JAN/FEB-2024

ELECTRO MAGNETIC FIELDS

(EEE)

[Time: 3 Hours]

PART – A

[Max. Marks: 60]

 $(10x \ 1 = 10M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer All Questions. Each question carries 1Mark.

1	Α	State Gauss Law	1M	BTL1
	В	Write Laplace equation in both Cartesian and cylindrical coordinates.	1M	BTL1
	С	What is meant by boundary conditions? How they are useful?	1M	BTL1
	D	Write the equation of continuity	1M	BTL1
	Е	State Ampere's circuit law.	1M	BTL1
	F	Define coefficient of coupling	1M	BTL1
	G	Write Maxwell's equations in point form.	1M	BTL1
	Н	Define internal inductance and external inductance	1M	BTL1
	Ι	Write Maxwell"s equation in Phasor form	1M	BTL1
	J	What is poynting vector?	1M	BTL1

PART - B

 $(5 \times 10 = 50M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Derive the expression for electric field intensity due to sheet of charge	5M	BTL4
2.B	Find the electric field intensity at $P(1,1,1)$ caused by four identical 3	5M	BTL3
	nC charges located at P1(1,1,0), P2(-1,1,0), P3(-1,-1,0) and P4(1, -1, 0).		

(OR)	
()	

3.A	State and explain coulomb's law with necessary equations	5M	BTL2
3.B	A charge of -0.3 μ C is located at A(25, -30, 15) (in cm) and a second charge of 0.5 μ C is at B(-10, 8, 12) cm. Find E at (a) the origin (b) P(15,20, 50) cm		BTL3

CC	DDE: 2	2202PC02 R22		SET - 3	
	4.A	Explain about Poisson's equation and Laplace equation.	5M	BTL2	
	4.B	Derive the expression for capacitance of parallel-plate capacitor	5M	BTL4	
		(OR)			
	5 1	Derive the expression for conscitance of a spherical conscitor	5M	BTI /	

5.A	Derive the expression for capacitance of a spherical capacitor	5M	BTL4
5.B	An electric dipole of $100a_z$ pC.m is located at the origin. Find V and E at points (i) (0, 0, 10) and (ii) (1, $\pi/3$, $\pi/2$)	5M	BTL3

SECTION - III

6.A	Derive the expression for magnetic field intensity due to infinitely long straight filament carrying a direct current I.	5M	BTL2
6.B	Discuss about force between differential current elements.	5M	BTL2
	(OR)		
7.A	Explain about magnetic flux and magnetic flux density.	5M	BTL2
7.B	Obtain an expression for the self-inductance of a toroid of circular cross	5M	BTL3

SECTION - IV

section with 'N' closely spaced turns.

8.A	A parallel plate capacitor with plate area of 5 cm^2 and separation of 3 mm has a voltage $50 \sin 103 \text{ t}$, V applied to its plates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$.	5M	BTL3
8.B	Explain about Faraday's laws of electromagnetic induction	5M	BTL2
	(OR)		

9.A	Explain about Dynamically induced EMFs.	5M	BTL2
9.B	Write the Maxwell's equations both in point and integral forms for time varying fields.	5M	BTL2

SECTION - V

10.A	State and explain poynting theorem.	5M	BTL2
10.B	Derive the necessary plane equation in free space and in a homogeneous material.	5M	BTL2
	(OR)		

11.A	In free space $E = 20 \cos (\omega t - 50x)$ ay V/m. calculate (i) J _d (ii) H (iii) ω	5M	BTL3
11.B	Derive the necessary plane equation in conducting medium and in loosy dielectrics.	5M	BTL2

____***____

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

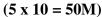
National Ranking by NIRF - Rank band (151-300), MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JANUARY-2024

ENGINEERING MECHANICS

(EEE)

[Time: 3 Hours]


PART – A

[Max. Marks: 60] (10x 1 = 10M)

Note: 1. This Part consists of 10 QUESTIONS

		$\mathbf{PART} - \mathbf{R} $ (5)	x 10 = 50	M)
	J	What is the principle of the conservation of energy?	1M	BTL2
	Ι	State D'Alemberts principle for a particle.	1M	BTL1
	Н	What is the parallel rule of moment of inertia?	1M	BTL2
	G	What is mass moment of inertia?	1M	BTL2
	F	Define the radius of gyration.	1M	BTL1
	E	Differentiate between centroid and center of gravity.	1M	BTL1
	D	How does friction influence the motion of bodies on surfaces?	1M	BTL2
	С	State the laws of friction.	1M	BTL1
	В	Define a free body diagram.	1M	BTL2
1	А	What is coplanar and non coplanar forces	1M	BTL1

$\mathbf{PAKI} - \mathbf{B}$

1. This Part consists of 10 QUESTIONS Note:

2. Answer any 1 question from each Section. Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

	SECTION – I		
2.A	State and prove Varignon's theorem of moments.	5M	BTL2
2.B	Two beams AB and CD are arranged and supported as shown in fig.	5M	BTL4
	Find the reaction at D due to a force of 1000 N acting at B.		
	1000 N		
	30° B		

(OR)

	(OK)		
3.A	Define couple and explain its characteristics. With the help of a sketch,	5M	BTL2
	explain how a force can be resolved into a force and a couple.		
3.B	Figure shows two vertical forces and a couple of moment 2000 N-m acting on a horizontal rod which is fixed at end A.Determine the resultant of the system.	5M	BTL5
	$A = \begin{bmatrix} 4000 \text{ N} & 2500 \text{ N} \\ 0.8 \text{ m} & 1 \\ \hline C & C \\ 2000 \text{ N} - \text{M} \\ 1 \text{ m} & 1.5 \text{ m} \\ \hline \end{bmatrix} B$		

DE: 2	202ES03 (R22)	ſ	SET - 3
SECTION - II			
4	A block of weight W_1 =1000N rests on a horizontal surface and supports on its top another block of weight W_2 =250N as shown in Fig. The weight W_2 is attached by an inclined string AB to the vertical Wall. Find the magnitude of the horizontal force P applied to the lower block to cause slipping to impend. The coefficient of friction for all contacting surfaces may be assumed to μ =0.3.	10M	BTL5
	(OR)		
5	The following particulars refer to a screw jack: Diameter of screw rod = 62.5 mm . Length of the handle = 250 mm . Pitch of the square thread = 12.5 mm . Coefficient of friction = 0.05 . (i) Find the effort required to lift up a load of 5000 N. (ii) Find the effort required to lift down a load of 5000 N.	10M	BTL4
	SECTION - III		
6.A	State and prove Pappus theorem.	5M	BTL2
6.B	With respect to coordinate axes x and y, locate the centroid of the shaded area shown in Fig.	5M	BTL4
	$125 \text{ mm} \\ 200 \text{ mm} \\ 75 \text{ mm} \\ 100 \text{ mm} \\ x \\ 125 \text{ mm} \\ 200 \text{ mm} \\ 000 \text{ mm} \\ x \\ (OR)$		

Find out moment of inertia at horizontal and vertical centroid axes of the	10M	BTL5			
given lamina.					
220 mm ►					
20 mm					
2 1 20 mm					
560 mm					
- 3 20mm					
	Find out moment of inertia at horizontal and vertical centroid axes of the given lamina.	Find out moment of inertia at horizontal and vertical centroid axes of the given lamina.			

CODE: 2	2202ES03
---------	----------

R22

SET - .	3
----------------	---

SECTION-IV

8	Determine the Mass moment of inertia a solid sphere of Radius R about	10M	BTL3		
	its diametrical axis.				
	(OR)				
9.A	State and prove transfer formula for product of inertia.	5M	BTL2		
9.B	Determine the mass moment of inertia of a cylinder shaft of 100mm diameters and 2.5m height about the centre of gravity axes.(density, ρ =8000 kg/m ³).	5M	BTL3		
	SECTION – V				

10	A solid right circular drum of radius r=0.3m and weight w=143.3 N is	10M	BTL5
	free to rotate about its geometric axis as shown in Fig.8, wound around a		
	circumference of the drum is flexible cord carrying at its free end a		
	weight Q =44.5 N .if the weight Q is released from rest. (a) find the time t		
	required for it to fall through the height h=3m (b) with what velocity "v"		
	will it strike the floor.		
	(And A A A A A A A A A A A A A A A A A A		
	h		
	(OR)	•	

11.A	Derive the expression of work done and kinetic energy for a rigid body.	4M	BTL1
11.B	A pile driver weighing 200 kg strikes a pile of 100 kg from a height of 7 m. If the resistance of penetration is constant and amounts to 6000 kg, how many blows will be required to drive it by 1 m? Consider the coefficient of restitution is 0.27.		BTL5

____***____

(Autonomous Institution – UGC, Govt. of India) (Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JAN/FEB -2024 MATHEMATICS - III (COMMON TO ECE & EEE)

[Time: 3 Hours]

PART – A

[Max. Marks: 70]

Note: 1. This Part consists of 8 QUESTIONS

2. Answer any 5 questions. Each question carries 2 Marks.

1	Α	State Cauchy-Riemann equations in a Cartesian coordinates.	2M	BTL2
	В	Show that z^2 is an analytic for all z.	2M	BT L3
	C	Evaluate $\int_{0}^{2+i} (\overline{z})^2 dz$ along the line $y = \frac{x}{2}$.	2M	BT L3
		Evaluate $\int_C \frac{z^2 + 4}{z - 3} dz$, where C is $ z = 5$.	2M	BT L3
	E	Calculate the residue of $\frac{3z+1}{(z+1)(2z-1)}$ at $z = \frac{1}{2}$.	2M	BT L2
	F	Find the Fourier coefficient a_0 for the given function $f(x) = e^x$ in the interval $0 < x < 2x$	₇ 2M	BT L1
	G	Find the Z-transform of $sin(3n+5)$.	2M	BT L1
	Η	Find the Z-transform of $e^t \sin 2t$.	2M	BT L1

PART – B

(5 x 12 = 60 M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	If $f(z)$ is an analytic function with constant modulus, show that $f(z)$ is constant.	6 M	BTL2	
2.B	Show that the polar form of Cauchy-Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$	6 M	BTL3	
(OR)				

3.A	If f(z) is a holomorphic function of z, show that $\left\{\frac{\partial}{\partial x} f(z) \right\}^2 + \left\{\frac{\partial}{\partial y} f(z) \right\}^2 = f'(z) .$	6 M	BTL3
3.B	Construct the analytic function, whose real part is $\frac{\sin 2x}{(\cosh 2y - \cos 2x)}$.	6 M	BTL3

SECTION - II

4.A	2+i		6 M	BTL3	
	Solve $\int_{1}^{2+i} (2x+iy+1)dz$, along the path	(i) $x = t + 1, y = 2t^2 - 1$	0 111	2120	
	1- <i>i</i>				

SET - 1

 $(5 \times 2 = 10M)$

R20

CODE: 2	DDE: 2000BS03 R20 SE		1
	(ii) the straight line joining $1-i$ and $2+i$.		
4.B	Verify Cauchy's theorem for the integral z^3 take over the boundary of the rectangle with vertices $-1, 1, 1+i, -1+i$.	6 M	BTL4
	(OR)		
5.A	State and prove Cauchy's integral formula.	6 M	BTL3
5.B	Expand the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region $1 < z+1 < 3$.	6 M	BTL4

SECTION - III

6.A	Determine the poles of the function $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+1)}$ and also calculate	6 M	BTL5	
	residues at each pole			
6.B	Evaluate $\iint_{c} \frac{e^{z}}{\cos \pi z} dz$, where C is the unit circle $ z = 1$.	6 M	BTL4	
(OR)				

7		$\pi d\theta$	_ π	12 M	BTL5
7.	Apply calculus of residues, to prove that	$\frac{1-2r\cos\theta+r^2}{1-2r\cos\theta+r^2}$	$=\frac{1-r^2}{1-r^2}$.		

SECTION - IV

8.A	Express the function $f(x) = x $ as a Fourier series in the interval $\pi < x < \pi$.		BTL4
8.B	Find the half-range cosine series for the function $f(x) = x^2$ in the range $0 \le x \le \pi$.		
(OR)			
9.	Obtain the Fourier series for the function $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi (2-x), 1 \le x \le 2 \end{cases}$.	12 M	BTL3
	Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$.		

SECTION - V

	SECTION					
10.A	Express the function $f(x) = \begin{cases} 1 \text{ for } x \le 1 \\ 0 \text{ for } x > 1 \end{cases}$ as a Fourier integral. Hence evaluate	6 M	BTL4			
10.71	$\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda .$					
10.B	Find the Fourier sine transform of $e^{- x }$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m > 0$.	6 M	BTL2			

	(OR)				
11.A	If $U(Z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, evaluate u_2 and u_3 .	6 M	BTL4		
	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$, using Z-transform.	6 M	BTL3		

[Time: 3 Hours]

R20

1

MALLA REDDY ENGINEERING COLLEGE FOR WOMEN

(Autonomous Institution – UGC, Govt. of India) (Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER SUPPLY EXAMINATIONS, FEBRUARY -2024 MATHEMATICS-III

(COMMON TO ECE, EEE)

[Max. Marks: 70]

 $(5 \times 2 = 10M)$

$\mathbf{PART} - \mathbf{A}$

Note: 1. This Part consists of 8 QUESTIONS

2. Answer any 5 questions. Each question carries 2 Marks.		
A Check whether $w = \overline{z}$ is analytic everywhere.	2M	BTL2
B Show that an analytic function with constant real part is constant.	2M	BTL3
C Find the harmonic conjugate of the function $u(x, y) = 2x(1-y)$	2M	BTL2
D Find the field for z^2	2M	BTL2
Find the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$		
E If $f(x) = x^3$, $-\pi < x < \pi$, find the constant term a_o of its Fourier series	_{s.} 2M	BTL3
F Prove that $F[f(x-a)] = e^{ias}F(s)$.	2M	BTL3
G State Dirichlet's conditions to expand a given function in Fourier series.	2M	BTL2
H Prove that $F\{f(ax)\} = \frac{1}{a}F\left[\frac{s}{a}\right], a > 0.$	2M	BTL3

PART – B

(5 x 12 = 60 M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section.Each question carries 12Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

	SECTION - I					
2.A	Verify if $f(z) = \frac{xy^2(x+iy)}{x^2+y^4}$, $z \neq 0$; $f(0) = 0$ is analytic or not.	6M	BTL3			
2.B	Evaluate the regular function whose imaginary part is $e^x \sin y$	6M	BTL5			
	(OR)					
3.A	Verify whether $f(z) = \log z$ is analytic	6M	BTL3			
3.B	Find the conjugate harmonic function of $u(x, y) = 3x^2y + 2x^2 - y^3 - 2y^2$	6M	BTL5			
	and express $u + iv$ as an analytic function of z					
	SECTION - II	•				
4.A	Using Cauchy's integral formula, evaluate $\int_{c} \frac{z}{(z+1)^2(z+3)} dz$, where C is	6M	BTL3			
	the Circle $ z+1 =1$.					
4.B	Find the Taylor's series to represent $\frac{z^2 - 1}{1 - 1}$ in $ z < 2$.	6M	BTL5			

CODE:	2000BS03		R20		SET-3
5.A		d f(3) where $f(a) = \prod_{C} \frac{2z}{1-z}$	$\lambda - u$	6M	BTL3
5.B	Expand $f(z) = -\frac{1}{2}$	$\frac{z^2 - 1}{(z+2)(z+3)}$ in Taylor's s	series if $ z < 2$.	6M	BTL5

SECTION - III

6.A	Evaluate $\int \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2 (z-2)} dz \text{ around } z = 3$	6M	BTL3
6.B	Using the method of contour integration, show that $\int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta} = \frac{2\pi}{3}.$	6M	BTL5

(OR)

7.A	Evaluate $\iint_{C} \frac{1}{\left(z^{2}+4\right)^{2}} dz, C: z-i = 2$	6M	BTL3
7.B	By contour integration, evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$	6M	BTL5

SECTION - IV

8.	Obtain the Fourier series of $f(x) = \begin{cases} x, & 0 < x < \pi \\ x & 0 < x < \pi \end{cases}$	12M	BTL3
	$2\pi - x, \ \pi < x < 2\pi$		

	(OK)		
9.A	Find the Fourier series for $f(x) = x^2 in(-\pi, \pi)$.	6M	BTL3
	Find the half-range cosine series for $f(x) = \cos \alpha x$ for α , not an integer	6M	BTL5
	in the range $0 < x < \pi$		

SECTION - V

10.A	Find the Fourier transform of $f(x)$ given by $f(x) = \begin{cases} 1; \text{ for } x < 2\\ 0; \text{ for } x > 2 \end{cases}$ and hen	6M	BTL3		
	evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$				
10.B	Find the Z-transform of $\frac{1}{n}$ and $\cos\left(\frac{n\pi}{2}\right)$	6M	BTL5		
(OR)					

	(OR)			
11.A	Applying convolution theorem, find $Z^{-1}\left(\frac{z^2}{(z-4)(z-5)}\right)$	6M	BTL3	
11.B	Solve the difference equation $y(k+2) + y(k) = 1$, $y(0) = 1$ and $y(1) = 0$.	6M	BTL5	

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JAN/FEB-2024

SIGNALS AND SYSTEMS

(EEE)

[Time: 3 Hours]

PART – A

[Max. Marks: 60]

 $(10x \ 1 = 10M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer All Questions. Each question carries 1 Mark.

1	Α	How signals are classified?	1M	BTL1
	В	How to represent periodic signals by Fourier series?	1M	BTL1
	С	Find the Fourier transform of e ^{-at} u (t).	1M	BTL2
	D	What is aliasing?	1M	BTL2
	Е	Define transfer function of a system	1M	BTL3
	F	How filters are classified according to frequency response?	1M	BTL4
	G	What is convolution?	1M	BTL3
	Н	Define energy spectral density.	1M	BTL3
	Ι	Evaluate the Laplace transform of $f(t) = e^{-j2t} u(t)$	1M	BTL5
	J	Identify the signal which has ROC in entire z-plane and justify the	1M	BTL3
		answer.		

PART – B

$(5 \times 10 = 50M)$

- **Note:** 1. This Part consists of 10 QUESTIONS
 - 2. Answer any 1 question from each Section. Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Estimate whether the following systems are time invariant or not?	5M	BTL4
	i) $y(t) = t x(t)$ ii) $y(n) = x (2n)$		
2.B	Discuss about the analogy between vectors and signals.	5M	BTL5

(OR)		
Evaluate the trigonometric series for the waveform shown in the figure.	10 M	BTL5
↑ <i>x</i> (<i>t</i>)		
-4π -3π -2π -π 0 π 2π 2π 1-		
$-\pi - 5\pi - \pi - 6 - \pi - 2\pi - 5\pi - 4\pi$		

4.AState and prove any three properties of continuous Fourier transform.5MBTL34.BSolve the Fourier transform of the signals5MBTL3

SECTION - II

DE: 2	202PC04 R22		SET - 1
	i) $x(t) = t e^{-at} u(t)$ ii) $x(t) = e^{-t} \cos 5t u(t)$		
	(OR)		
5.A	State and prove sampling theorem for band limited signals using graphica approach.	5M	BTL3
5.B	Discuss about natural and flat top sampling.	5M	BTL3

SECTION	- III
---------	-------

6.A	Check whether the following system is (i) Linear or Nonlinear	5M	BTL3
	(ii) Time invariant or time variant (iii) Static or dynamic		
	The given system is $y(n) = a^n u(n)$		
6.B	Obtain the conditions for the distortion less transmission through a	5M	BTL3
	system.		
	(OR)		
7.A	Explain causality and physical reliability of a system and explain Poly-	5M	BTL4
	Wiener criterion.		
7.B	Derive the relation between band width and rise time of a low pass filter.	5M	BTL4

SECTION – IV				
8.A	State and prove the time convolution theorem with Fourier transforms.	5M	BTL1	
8.B	Derive the relation between convolution and correlation.	5M	BTL2	
	(OR)			
9.A	State and prove the Parseval's theorem for energy signals.	5M	BTL4	
9.B	Explain the detection of periodic signals in the presence of noise by auto	5M	BTL2	
	correlation.			

SECTION - V

10.A	Find the Laplace transform of the signal $x(t) = e^{-at} u(t) - e^{-bt} u(-t)$ and also	5M	BTL5		
	find its ROC.				
10.B	Find the inverse transform of the following	5M	BTL5		
	(i) $X(s) = 1 / [s (s+1) (s+2) (s+3)]$				
	(ii) $X(s) = s / [(s+3)(s^2+4s+5)]$				
(OR)					

11.A	State and prove initial and final value theorems of Z-transform.	5M	BTL3
11.B	Find the inverse Z-transform of $X(z) = z^{-1} / (3 - 4z^{-1} + z^{-2})$, ROC: $ z > 1$	5M	BTL2

____***_____