MALLA REDDY ENGINEERING COLLEGE FOR WOMEN (Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

National Ranking by NIRF - Rank band (151-300), MHRD, Govt. of India

B.TECH IV YEAR I SEMESTER REGULAR EXAMINATIONS, NOVEMBER-2023 COMPUER FORENSICS (COMMON TO ECE,EEE)

[Time: 3 Hours]

PART – A

(5 x 2 = 10 M)

[Max. Marks: 70]

Note: 1. This Part consists of 8 QUESTIONS.

2. Answer any 5 questions. Each question carries 2 Marks .

1.	А	List the types of cyber crime	2M	BTL2
	В	Mention the activities in Initial Response	2M	BTL2
	С	What is forensics duplication?	2M	BTL1
	D	Write the different data collection methods	2M	BTL1
	Е	What are the different acquisition tools in forensics?	2M	BTL1
	F	Define network forensics	2M	BTL1
	G	Outline the role of client and server roles in e-mail	2M	BTL2
	Η	Mention the Windows Registry Commands	2M	BTL2

PART - B

 $(5 \times 12 = 60M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

JECTION I

2.A	Distinguish between worms and viruses in the context of cyber threats.	6M	BTL3
2.B	Explain the concept of cybercrime and its various types. Provide examples of each type and discuss their implications for individuals and society.	6M	BTL2

(OR)

3.A	Discuss the key processes and techniques involved in digital forensics	6M	BTL4
	and their role in gathering and preserving digital evidence.		
3.B	Explain the incident response methodology and its various steps, with a	6M	BTL3
	focus on the initial response phase.		

SECTION - II

4.A	Detail the process of collecting volatile data from a Windows system	6M	BTL3
	During the initial response phase of a cyber incident and provide examples.		
4.B	Discuss the role of forensic duplication in the investigation of cybercrimes.	6M	BTL4

SET - 1

R20

CODE: 2	2005OE07
---------	----------

|--|

SET - 1

(OR)

5.A	Explain the significance of the initial response phase in incident handling	6M	BTL3
	and cybersecurity. Discuss the key activities involved in this phase and		
	how they help in mitigating the impact of security incidents.		
5.B	Outline the specific requirements and considerations for selecting and	6M	BTL4
	using forensic duplication tools in a cybersecurity investigation.		

SECTION - III

6.A	Describe common data-hiding techniques that individuals may use	6M	BTL4
	to conceal evidence on a computer.		
6.B	Discuss the use of network tools in network forensics investigations.	6M	BTL3
	Provide examples of commonly used network tools and their roles in the		
	data collection and analysis process.		

(OR)

I	7.A	Explain the process of determining what data to collect and analyze	6M	BTL3
		in a computer forensic investigation.		
I	7.B	Examine the Honeynet Project and its relevance in network forensics.	6M	BTL3
		Describe the objectives and methods of the Honeynet Project and discuss		
		how it contributes to understanding and mitigating cybersecurity threats.		

SECTION - IV

8.A	A Explain the distinction between computer forensic software tools and computer forensic hardware tools. Provide examples of each and discuss		BTL2
	their respective roles in digital investigations.		
8.B	Explain the concept of email servers and their importance in email	6M	BTL2
	investigations.		

(OR)

9.A	Discuss the use of specialized email forensics tools in digital	6M	BTL3
	investigations. Provide examples of such tools.		
9.B	Detail the procedures for acquiring data from cell phones and mobile	6M	BTL2
	devices in a forensic investigation.		

SECTION-V

10.A	Discuss the key differences between common file systems, such as FAT, NTES, and exEAT, and their significance in forensic analysis	6M	BTL3
10.B	Explain the use of virtual machines in digital forensics. Discuss how	6M	BTL2
	virtualization technology is applied to create forensic work environments,		
	isolate digital evidence, and safely analyze potentially malicious files.		

11.A	Examine Microsoft startup tasks and their relevance in forensic	6M	BTL2
	investigations.		
11.B	Explain the role of the Windows Registry in digital forensics. Discuss the	6M	BTL3
	structure and purpose of the Registry, and how it can be valuable in		
	forensic analysis for gathering information about system configuration and		
	user activity.		

(OR)

MALLA REDDY ENGINEERING COLLEGE FOR WOME \overline{N}

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

National Ranking by NIRF - Rank band (151-300), MHRD, Govt. of India

B.TECH IV YEAR I SEMESTER END EXAMINATIONS, NOVEMBER-2023

ELECTRICAL MEASUREMENTS & INSTRUMENTATION

(ELECTRICAL AND ELECTRONICS ENGINEERING)

[Time: 3 Hours]

PART – A

[Max. Marks: 70] (5 x 2 = 10M)

Note: 1. This Part consists of 8 QUESTIONS

2. Answer any 5 questions. Each question carries 2 Marks.

			(1	
	Η	Recite the applications of photo diode	2M	BTL1
	G	Define transducers	2M	BTL1
	F	Make use of Wheatstone bridge and write the equation for unmown resistance	2M	BTL3
	Е	Recall the meaning of the term maximum demand, what is its impact to the consumer when maximum demand is increased from actual demand.	2M	BTL1
	D	Outline the use of phantom loading in energy meter testing	2M	BTL2
	С	Illustrate phase angle error	2M	BTL2
	В	List out three torques applicable to measuring instruments	2M	BTL1
1	А	What do you infer from the terms accuracy & precision?	2M	BTL2

PART – B

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Describe the construction and working of moving iron attraction type instrument also derive the expression for torque developed	6M	BTL2
2.B	Develop a multirange dc milliammeter with a basic meter having a resistance 75Ω and full scale deflection for the current of 2 mA. The required ranges are $0 - 10$ mA, $0 - 50$ mA, $0 - 100$ mA.	6M	BTL2

(OR)

3.A	How will you extend the range of voltmeter? Derive the expression for	6M	BTL2
	multiplier and compare shunt with multiplier.		
3.B	Describe the working of eddy current damping with neat sketch	6M	BTL3

SECTION - II

4.A	Explain the principle and operation of DC Crompton's potentiometer	6M	BTL2
4.B	Demonstrate the working of current transformer, also mention why secondary of CT should not be open circuited?	6M	BTL3

(OR)

5.A	Explain the construction and working of Coordinate type Potentiometer and draw its phasor diagram	6M	BTL3
5.B	Describe how will you measure the self-reactance of a coil using potentiometer	6M	BTL1

CODE: 2002PC12

R20

SET - 1

SECTION - III

6.A	Describe the working principle of dynamometer type wattmeter	6M	BTL3
6.B	Draw the neat sketch of single phase induction type energy meter.	6M	BTL3
	Explain the functions of driving systems, moving system, braking		
	system and registering system in Energy meter.		
	(OR)		
7.A	With the help of circuit connection and phasor diagram explain how two	12M	BTL3
	Wattmeter's can be used to measure active power in a 3 phase system.		
	Also derive the equation for power factor and reactive power		
	SECTION – IV		
8.A	The four arms of a Hay's AC bridge are arranged as follows:	12M	BTL3
	AB is a coil of unknown impedance;		
	BC is a non-inductive resistor of 1000 Ω ;		

8.A	The four arms of a Hay's AC bridge are arranged as follows:	12M	BTL3
	AB is a coil of unknown impedance;		
	BC is a non-inductive resistor of 1000 Ω ;		
	CD is a non-inductive resistor of 833 Ω in series with a standard		
	capacitor of 0.38 μF;		
	DA is a non-inductive resistor of 16,800 Ω .		
	If the supply frequency is 50 Hz, determine the inductance and the		
	resistance at the balanced condition.		

(OR)

9.A	Derive the balanced condition of modified kelvin's double bridge and	12M	BTL3
	conclude how the contact / lead resistance problem can be eliminated		
SECTION – V			

10.A	List out few characteristics and choice of transducers	4M	BTL2	
10.B	Explain the working principle of LVDT with neat diagram	8M	BTL3	
(OR)				

11.A	Explore working principle of DSO with block diagram and discuss its	12 M	BTL3
	advantages and disadvantages, over CRO		

____***_____

MALLA REDDY ENGINEERING COLLEGE FOR WOMEN (Autonomous Institution – UGC, Govt. of India) (Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified) Accredited by NBA & NAAC – 'A' Grade National Ranking by NIRF - Rank band (151-300), MHRD, Govt. of India **B.TECH IV YEAR I SEMESTER REGULAR EXAMINATIONS, NOVEMBER - 2023** MICRO PROCESSORS AND MICRO CONTROLLERS (ECE, EEE) [Time: 3 Hours] [Max. Marks: 70] PART – A $(5 \times 2 = 10M)$ Note: 1. This Part consists of 8 QUESTIONS 2. Answer any 5 questions. Each question carries 2 Marks Write a program to move a string of data words from offset 2000H to 2M BTL1 .1 А offset 3000H the length of the string is 0FH Write 8086 ALP for the Block Transfer of Data BTL1 В 2M С Draw the 8051 Timing Diagram 2M BTL2 Write 8051ALP for the Shift Right, Shift Left, Rotate Right, Rotate Left BTL1 D 2M Ε State the features of 8051 2M BTL1 F How memory allocation is used for data processing 2M BTL1 G Write a simple program using Thumb instruction. 2M BTL1 Η Justify Memory processing and commands used in OMAP processor 2M BTL2

R20

PART – B

(5 x 12 = 60M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SLCTION 1

2.A	Differentiate minimum and maximum modes of operation of 8086.	5M		BTL	1
2.B	Explain the different general purpose registers of 8086	7M	7M		2
	(OR)				
3.A	Explain different assembler directives and operators of 8086 in brief	71	M E	BTL1	
3.B	Explain the different string manipulation operations of 8086.	51	M E	BTL2	

SET - 1

CODE: 2004PC13		R20		SET - 1
	S	ECTION - II		
4.A	Explain about I/O ports of 8051. (Port	s – 0, 1, 2, 3)	6M	BTL1
4.B	Draw the pin diagram of 8051 and exp	plain the function of each pin	6M	BTL2
	DE: 2 4.A 4.B	DE: 2004PC13 S 4.A Explain about I/O ports of 8051. (Port 4.B Draw the pin diagram of 8051 and explanations.	DE: 2004PC13 R20 SECTION - II 4.A Explain about I/O ports of 8051. (Ports – 0, 1, 2, 3) 4.B Draw the pin diagram of 8051 and explain the function of each pin	DE: 2004PC13 R20 SECTION - II 4.A Explain about I/O ports of 8051. (Ports – 0, 1, 2, 3) 6M 4.B Draw the pin diagram of 8051 and explain the function of each pin 6M

٦

(OR)

5.A	Explain (i) NMI (ii) INTR	5M	BTL1
5.B	Explain with a neat diagram the architecture of 8051	7M	BTL2

SECTION - III

6.A	Draw the block diagram for the following chips and explain:	7M	BTL1
	(i) 8255 PPI (ii) 8259 PIC (iii) 8251 USART.		
6.B	Explain the different modes of operation in 8255	5M	BTL2

	(OR)					
7.A	Explain with block, pin, and timing diagrams the functionality of	6M	BTL1			
	ADC 0808					
7.B	Explain the transfer of control during the execution of an ISR	6M	BTL2			

SECTION - IV

8.A	Explain about ARM instructions set.	6M	BTL1
8.B	What is PSR, explain in detail.	6M	BTL2

(OR)

9.A	Explain about different Registers in ARM based architecture.	7M	BTL1			
9.B	Write a simple program for Memory allocation in an ARM processor	5M	BTL2			

SECTION - V

10.A	Design Architecture of CORTEX processor	7M	BTL3	
10.B	Design block diagram for OMAP processor	5M	BTL3	
(OB)				

	(OR)				
11.A	Write a Simple Program using Instructions of the CORTEX processor	6M	BTL1		
11.B	Explain registers used in OMAP Processor	6M	BTL2		

MALLA REDDY ENGINEERING COLLEGE FOR WOMEN (Autonomous Institution – UGC, Govt. of India) (Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified) Accredited by NBA & NAAC - 'A' Grade NIRF India Ranking, Accepted by MHRD, Govt. of India B.TECH IV YEAR I SEMESTER REGULAR EXAMINATIONS, NOVEMBER-2023 POWER SEMICONDUCTOR DRIVES

(EEE)

[Time: 3 Hours]

[Max. Marks: 70]

PART – A

(5 x 2 = 10 M)

Note: 1. This Part consists of 8 QUESTIONS

2. Answer any 5 questions. Each question carries 2 Marks.

1	А	What is an individual electric drive? Give some examples	2M	BTL1
	В	List out some advantages of electrical drive?	2M	BTL1
	С	How many thyristors does we need in half wave converter?	2M	BTL1
		Why?		
	D	List the advantages offered by dc chopper drives over line-	2M	BTL1
		commutated converter-controlled dc drives		
	E	Why V/f ratio must be constant for a frequency-controlled	2M	BTL1
		induction motor drive?		
	F	Write the concept of heat dissipation in AC machines.	2M	BTL1
	G	What is dq axis? Explain it.	2M	BTL1
	Η	Draw the block diagram of closed loop operation of synchronous	2M	BTL1
		motor drives.		

PART – B

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Explain the different components of basic electrical drive system.		BTL2
2.B	Explain the operation of a separately excited dc motor supplied from 1- phase fully controlled rectifier with necessary diagrams. Assume Continuous conduction.	6M	BTL2

	(OR)				
3.A	How do you define the active and passive load torques? What are the	6M	BTL2		
	differences between the two?				
3.B	Explain the operation of a separately excited dc motor supplied from 3-	6M	BTL2		
	phase fully controlled rectifier with necessary diagrams. Assume				
	Continuous conduction.				
	SECTION - II				
ΔΔ	Distinguish between class A and class B choppers with suitable	6M	BTI 3		

4.A	Distinguish between class A and class B choppers with suitable	6M	BTL3
	examples of speed control of motors.		
4.B	A 220V, 960 rpm, 90A DC separately excited motor has an armature	6M	BTL2
	resistance of 0.06 ohm. It is coupled to an overhauling load with a torque		
	of 300 N-m. Determine the speed at which the motor can hold the load		

 $(5 \times 12 = 60 \text{M})$

	by regenerative braking?			
	(OR)			
5.A	Describe different braking methods employed for electrical motors.	6M	BTL2	
5.B	A 230 V, 960 rpm and 200A separately excited dc motor has an armature resistance of 0.020. The motor is fed from a chapper, which	6M	BTL3	
	annature resistance of 0.0252. The motor is fed from a chopper, which can provide both motoring and braking operations. The source has a			
	voltage of 230V Assuming continuous conduction: (i) Calculate the			
	time ratio of chopper for the motoring action at rated torque and 350			
	rpm. (ii) Determine the maximum possible speed, if maximum value of			
	time ratio is 0.95 and maximum permissible motor current is twice the			
	rated value.			
	SECTION - III			
6.A	Why stator voltage control is an inefficient method of induction motor speed control.	6M	BTL2	
6.B	Discuss speed control of induction motor from stator side with speed- torque curves.	6M	BTL3	
	(OR)		·]	
7.A	Write some of the applications of stator voltage control of three phase induction motor.	6M	BTL2	
7.B	Explain with the help torque-speed characteristics, why stator voltage	6M	BTL3	
	control is suitable for speed control of induction motors in fan and pump			
	dives. Draw a neat circuit diagram for speed control of scheme of 3			
	phase induction motor using AC voltage controller.			
	SECTION – IV			
8.A	Draw the circuit diagram and explain the working of a slip power	6M	BTL2	
	recovery system using Solid - State Scherbius system for a three-phase			
0.5	induction motor.	0.5		
8.B	A 440 V, 50 Hz, 6-pole Y-connected wound rotor motor has the	6M	BTL2	
	following parameters: $Rs=0.5 \Omega$, $Rr'=0.4 \Omega$, $As=Ar'=1.2 \Omega$, $Am=50 \Omega$,			
	stator to rotor turns ratio is 3.5. Motor is controlled by static rotor			
	tergue is produced at standstill for a duty ratio of zero. Calculate the			
	value of external resistance			
	(OR)			
9.A	Draw the circuit diagram and explain the operation of rotor- resistance	6M	BTL2	
	control of Induction motor. Mention the advantages and disadvantages			
	of the above method of control.			
9.B	Explain Static Kramer drive for a three-phase induction motor.	6M	BTL3	
L	SECTION – V		1	
10.A	Describe self-controlled and separate controlled mode of operation of a	6M	BTL2	
	synchronous motor drive in detail and compare them.			
10.B	Draw the block diagram of a closed loop synchronous motor drive fed	6M	BTL3	
	from VSI.			
(OR)				
11.A	When operating in true synchronous mode, why the frequency must be	6M	BTL2	
	changed in small steps?			
11.B	Give advantages of self-controlled variable speed synchronous motor	6M	BTL3	
1	drive and applications	1	1	