

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JAN/FEB-2024 DATA STRUCTURES AND ALGORITHMS (CSE, CSE-DS, CSE-AIML, CSE-IOT, CSE-CS & IT)

[Time: 3 Hours]

[Max. Marks: 60]

PART – A

 $(10x \ 1 = 10M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer All Questions. Each question carries 1Mark.

1	А	Write down the complexity of Linear and Binary Search?	1M	BTL2
	В	Define Data Structures?	1 M	BTL1
	С	Evaluate the postfix expression 521*+	1M	BTL4
	D	Draw a Diagram for Double ended Queue?	1M	BTL1
	Е	Write down the Application of Linked List.	1 M	BTL2
	F	Differentiate a circular linked list from a normal	1M	BTL3
		Linked list?		
	G	Discriminate between Binary Tree and Binary Search Tree.	1M	BTL2
	Η	Why we need AVL Tree?	1M	BTL4
	Ι	Explain about DAG?	1M	BTL2
	J	Define Hashing?	1M	BTL1

PART – B

 $(5 \times 10 = 50M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section.Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Write detail notes on time complexity and space complexity	5M	BTL3		
2.B	Explain in detail about Asymptotic Notation	5M	BTL3		
(OR)					

3.	Write down C or Python code for implementing Linear Search and	10M	BTL4
	Binary Search Techniques		

SECTION - II

4.A	Write an algorithm for insertion and deletion operation in Circular Queue	5M	BTL3
4.B	What is STACK? Write and explain algorithm for PUSH & POP	5M	BTL2

CODE: 2205PC01

R22	

SET - 3

(OR)

	(OR)		
5.A	Define Queue and explain its basic operations.	5M	BTL3
5.B	Evaluate the following postfix expression in tabular form showing stack after every step.	5M	BTL5
	7 6 + 4 * 4 10 + - 5 +		
	SECTION - III	•	· · · · · ·
6.A	Write down C or python program for Singly Linked list	5M	BTL4
6.B	Differentiate between Singly Linked list and Circular Linked List	5M	BTL3
	(OR)	1	
7.	Write down all the operations involved in Doubly Linked List	10M	BTL3
	SECTION – IV	1	
8.A	What is Tree Traversal? What are different methods of tree traversal? Explain Any one with example	8M	BTL3
8.B	Differentiate B-Tree and B+ Tree	2M	BTL3
	(OR)	1	
9.	Construct AVL tree for the following data 21,26,30,9,4,14,28,18,15,10,2,3,7	10M	BTL5
	SECTION – V		
10.A	What is Hashing? Explain linear probing method with suitable example	5M	BTL4
10.B	Compare all Sorting Methods.	5M	BTL3
L	(OR)	-	
11.	Define Sorting. Explain in detail about Quick Sort.	10M	BTL3
	•		

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER SUPPLY EXAMINATIONS, JAN/FEB-2024 DATA STRUCTURES AND ALGORITHMS (CSE, CSE-DS, CSE-AIML, CSE-IOT, CSE-CS & IT)

[Time: 3 Hours]

[Max. Marks: 70]

PART – A

(5x2=10M)

Note: 1. This Part consists of 8 QUESTIONS

2. Answer ANY 5 Questions. Each question carries 2Marks.

1	А	Write down the complexity of Linear and Binary Search?	2M	BTL2
	В	Define Data Structures?	2M	BTL1
	С	Evaluate the postfix expression 521*+	2M	BTL4
	D	Draw a Diagram for Double ended Queue?	2M	BTL1
	Е	Write down the Application of Linked List.	2M	BTL2
	F	Differentiate a circular linked list from a normal	2M	BTL3
		Linked list?		
	G	Discriminate between Binary Tree and Binary Search Tree.	2M	BTL2
	Н	Why we need AVL Tree?	2M	BTL4

PART – B

(5 x 12 = 50 M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Write detail notes on time complexity and space complexity	6M	BTL3
2.B	Explain in detail about Asymptotic Notation	6M	BTL3

(OR)
·	

3.	Write down C or Python code for implementing Linear Search and	12M	BTL4
	Binary Search Techniques		

SECTION - II

4.BWhat is STACK? Write and explain algorithm for PUSH & POP6MBTL2	4. <i>A</i>	Write an algorithm for insertion and deletion operation in Circular Queue	6M	BTL3
	4.E	What is STACK? Write and explain algorithm for PUSH & POP	6M	BTL2

(OR)

5.A	Define Queue and explain its basic operations.	6M	BTL3	
-----	--	----	------	--

DE: 2	005PC01 R20		SET - 3
5.B	Evaluate the following postfix expression in tabular form showing stack after every step. 7 6 + 4 * 4 10 + - 5 +	6M	BTL5
	SECTION - III		
6.A	Write down C or python program for Singly Linked list	6M	BTL4
6.B	Differentiate between Singly Linked list and Circular Linked List	6M	BTL3
	(OR)		
7.	Write down all the operations involved in Doubly Linked List	12M	BTL3
	SECTION – IV		
8.A	What is Tree Traversal? What are different methods of tree traversal? Explain Any one with example	8M	BTL3
8.B	Differentiate B-Tree and B+ Tree	4M	BTL3
	(OR)		1
9.	Construct AVL tree for the following data 21,26,30,9,4,14,28,18,15,10,2,3,7	12M	BTL5
	SECTION – V		1
10.A	What is Hashing? Explain linear probing method with suitable example	6M	BTL4
10.B	Compare all Sorting Methods.	6M	BTL3
	(OR)	1	
11.	Define Sorting. Explain in detail about Quick Sort.	12M	BTL3

DISCRETE MATHEMATICS

(CSE, CSE-DS, CSE-AIML, CSE-IOT, CSE-CS & IT)

[Time: 3 Hours]

[Max. Marks: 60]

PART – A

 $(10x \ 1 = 10M)$

Note: 1. This Part consists of 10 QUESTIONS

1AProvide examples of well-formed formulas (WFFs) and identify any that are not.1 MBTL 3BDefine the implication and biconditional connectives. Give Example.1 MBTL 2CDefine finite and infinite sets. Give Examples.1 MBTL 2DDistinguish between reflexive, symmetric, and transitive relations.1 MBTL 3EDifferentiate between a semi-group, a monoid, and a group. Provide examples.1 MBTL 3FDefine the terms conjunction, disjunction, and complement in Boolean algebra with examples.1 MBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 2JDefine articulation point with an example1 MBTL 1	2. Answer All Questions . Each question carries 1 Mark.				
BDefine the implication and biconditional connectives. Give Example.1 MBTL 2CDefine finite and infinite sets. Give Examples.1 MBTL 2DDistinguish between reflexive, symmetric, and transitive relations.1 MBTL 4EDifferentiate between a semi-group, a monoid, and a group. Provide1 MBTL 3examples.1 MBTL 2BTL 3FDefine the terms conjunction, disjunction, and complement in Boolean1 MBTL 2GCalculate the number of ways to arrange the letters of the word "MATH."1 MBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1	1	Α	Provide examples of well-formed formulas (WFFs) and identify any	1 M	BTL 3
CDefine finite and infinite sets. Give Examples.1 MBTL 2DDistinguish between reflexive, symmetric, and transitive relations.1 MBTL 4EDifferentiate between a semi-group, a monoid, and a group. Provide1 MBTL 3examples.IMBTL 2FDefine the terms conjunction, disjunction, and complement in Boolean1 MBTL 2algebra with examples.IMBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1			that are not.		
DDistinguish between reflexive, symmetric, and transitive relations.1 MBTL 4EDifferentiate between a semi-group, a monoid, and a group. Provide1 MBTL 3examples.IMBTL 2algebra with examples.IMBTL 2GCalculate the number of ways to arrange the letters of the word "MATH."1 MBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1		В	Define the implication and biconditional connectives. Give Example.	1 M	BTL 2
EDifferentiate between a semi-group, a monoid, and a group. Provide1 MBTL 3examples.FDefine the terms conjunction, disjunction, and complement in Boolean1 MBTL 2algebra with examples.IMBTL 4GCalculate the number of ways to arrange the letters of the word "MATH."1 MBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1		С	Define finite and infinite sets. Give Examples.	1 M	BTL 2
examples.examples.FDefine the terms conjunction, disjunction, and complement in Boolean algebra with examples.1 MBTL 2GCalculate the number of ways to arrange the letters of the word "MATH."1 MBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1		D	Distinguish between reflexive, symmetric, and transitive relations.	1 M	BTL 4
FDefine the terms conjunction, disjunction, and complement in Boolean1 MBTL 2algebra with examples.GCalculate the number of ways to arrange the letters of the word "MATH."1 MBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1		E	Differentiate between a semi-group, a monoid, and a group. Provide	1 M	BTL 3
algebra with examples.Image: Calculate the number of ways to arrange the letters of the word "MATH."Image: Mathematical Mathema			examples.		
GCalculate the number of ways to arrange the letters of the word "MATH."1 MBTL 4HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1		F	Define the terms conjunction, disjunction, and complement in Boolean	1 M	BTL 2
HGive a real-life example where the Pigeonhole Principle is applicable.1 MBTL 2IDefine walk, path.1 MBTL 1			algebra with examples.		
I Define walk, path. 1 M BTL 1		G	Calculate the number of ways to arrange the letters of the word "MATH."	1 M	BTL 4
		Η	Give a real-life example where the Pigeonhole Principle is applicable.	1 M	BTL 2
JDefine articulation point with an example1 MBTL 1		Ι	Define walk, path.	1 M	BTL 1
		J	Define articulation point with an example	1 M	BTL 1

PART – B

 $(5 \times 10 = 50M)$

Note: 1. ThisPart consists of 10 QUESTIONS

2. Answer any 1 question from each Section.Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION-I

2.A	Investigate De Morgan's Laws in propositional logic and provide proofs for	5 M	BTL 4
	both $\neg(p \land q) \equiv \neg p \lor \neg q$ and $\neg(p \lor q) \equiv \neg p \land \neg q$.		
2.B	Determine the negation of the statement "For every integer n, if n is even,	5 M	BTL 5
	then 2n is even."		
(OR)			
3.A	Prove that $p \lor \neg p$ is always true, regardless of the truth value of p.	5 M	BTL 4

	Use a proof by contraposition to show that if $p \rightarrow q$, then $\neg q \rightarrow \neg p$		
3.B	Discuss the applications of CNF in logical expressions. Convert the	5 M	BTL 5
	proposition (p $V\neg q$) \land (r \rightarrow s) into Conjunctive Normal Form (CNF).		
	SECTION - II		

4.A	Define the concept of a set and discuss the fundamental operations on	5 M	BTL 4
	sets, including union, intersection, and complement. Provide illustrative		
	examples to explain each operation.		
4.B	Explain the concept of a recursive definition and its role in	5 M	BTL 5
	defining sequences. Define a sequence $\{a_n\}$ recursively as		
	follows $a_1 = 2$ and $a_{n+1} = 2a_n - 1$ for Calculate the first five		
	terms of the sequence and express the general term <i>an</i> in		
	terms of n.		

CODE: : 2205PC03

	(OR)	\subseteq	
5.A	Define a function and discuss the concepts of domain, codomain, and	5 M	BTL 4
J.A	· · · · · · · · · · · · · · · · · · ·	JIVI	DIL 4
	range. Given the sets $A = \{1,2,3\}$ and $B = \{a, b, c\}$ define two functions f: $A \rightarrow B$ and g: $B \rightarrow A$. Provide the mappings for both functions and		
	determine $g \circ f$ and $f \circ g$		
5.B		5 M	BTL 5
Э.Б	Define the Well-Ordering Principle and discuss its significance in proving methometrical statements. Provide an example to demonstrate	JM	DILJ
	proving mathematical statements. Provide an example to demonstrate		
	the application of the Well-Ordering Principle in a proof. SECTION - III		
6.A		5 M	BTL 4
0.A	Define normal subgroups in the context of group theory. Prove the	JIVI	DIL 4
	criterion for normality and provide examples of groups with normal and		
6 D	non-normal subgroups.	5 M	BTL 5
6.B	Define a Boolean ring and distinguish it from a general ring. Prove that the	5 M	BILJ
	complement operation in a Boolean algebra satisfies the idempotent law:		
7 4	(OR)	5 1/	
7.A	Define cyclic groups and discuss the properties of cyclic groups. Provide	5 M	BTL 4
	examples of finite and infinite cyclic groups and prove that every subgroup		
7.D	a cyclic group is also cyclic.	5 1 4	DTL 5
7.B	Discuss the representation of Boolean functions using truth tables and	5 M	BTL 5
	algebraic expressions. Consider a Boolean function $f(x, y, z) = x \cdot y + x$		
	$y^- \cdot z^-$ Apply the principles of duality to derive an equivalent		
	expression forthe complement of <i>f</i>		
	SECTION – IV		
8.A	Define the Inclusion-Exclusion Principle in combinatorics. Explain its	6 M	BTL 4
	significance in solving problems involving overlapping sets.		
	Apply the Inclusion-Exclusion Principle to find the number of integers from		
	to 100 that are divisible by either 2, 3, or 5. Provide a step-by-step solution.		
8.B	A box contains 5 red balls, 3 blue balls, and 2 green balls. In how many	4 M	BTL 5
	ways can a person select 4 balls from the box? Consider all possibilities.		
	(OR)		
9.A	State the Pigeonhole Principle and discuss its applications in combinatorics.	6 M	BTL 4
	In a group of 21 students, each of whom is assigned a unique integer from		
	1 to 20, prove that there are at least two students with consecutive integers.		
9.B	Calculate the number of distinct arrangements of the word	4 M	BTL 5
	"COMBINATORICS" considering all the letters.		
	SECTION – V		
10.A	Define graph coloring and explain the concept of chromatic numbers.	5 M	BTL 4
	Prove that every planar graph is 6-colorable.		
10.B	Explain the concept of shortest paths in a graph and discuss Dijkstra's	5 M	BTL 5
	algorithm for finding the shortest path.		
	(OR)		
11.A	Define Eulerian walks and Hamiltonian cycles in a graph. Discuss the	5 M	BTL 4
	conditions under which a graph can have an Eulerian walk or Hamiltonian		
	cycle.		
11.B	Define weighted trees and discuss their application in representing prefix	5 M	BTL 5
	codes. Provide an example.		

B.TECH II YEAR I SEMESTER SUPPLY EXAMINATIONS, JAN/FEB-2024

DISCRETE MATHEMATICS

(CSE, CSE-DS, CSE-AIML, CSE-IOT, CSE-CS & IT)

[Time: 3 Hours]

[Max. Marks: 70]

PART – A

 $(5x \ 2 = 10M)$

Note: 1. This Part consists of 8 QUESTIONS

	2. Answer ANY 5 Questions . Each question carries 2 Marks.					
1	А	Provide examples of well-formed formulas (WFFs) and identify any	2 M	BTL 3		
		that are not.				
	В	Define the implication and biconditional connectives. Give Example.	2 M	BTL 2		
	С	Define finite and infinite sets. Give Examples.	2 M	BTL 2		
	D	Distinguish between reflexive, symmetric, and transitive relations.	2 M	BTL 4		
	E	Differentiate between a semi-group, a monoid, and a group. Provide	2 M	BTL 3		
		examples.				
	F	Define the terms conjunction, disjunction, and complement in Boolean	2 M	BTL 2		
		algebra with examples.				
	G	Calculate the number of ways to arrange the letters of the word "MATH."	2 M	BTL 4		
	Η	Give a real-life example where the Pigeonhole Principle is applicable.	2 M	BTL 2		

PART – B

(5 x 12 = 60 M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

	SECTION – I		
2.A	Investigate De Morgan's Laws in propositional logic and provide proofs for	6 M	BTL 4
	both $\neg(p \land q) \equiv \neg p \lor \neg q$ and $\neg(p \lor q) \equiv \neg p \land \neg q$.		
2.B	Determine the negation of the statement "For every integer n, if n is even,	6M	BTL 5
	then 2n is even."		
	(OR)		
3.A	Prove that $p \vee p$ is always true, regardless of the truth value of p.	6M	BTL 4
	Use a proof by contraposition to show that if $p \rightarrow q$, then $\neg q \rightarrow \neg p$		
3.B	Discuss the applications of CNF in logical expressions. Convert the	6 M	BTL 5
	proposition (p $\forall \neg q$) \land (r \rightarrow s) into Conjunctive Normal Form (CNF).		
	SECTION - II		
4.A	Define the concept of a set and discuss the fundamental operations on	6 M	BTL 4
	sets, including union, intersection, and complement. Provide illustrative		
	examples to explain each operation.		
4.B	Explain the concept of a recursive definition and its role in	6 M	BTL 5
	defining sequences. Define a sequence $\{a_n\}$ recursively as		
	follows $a_1 = 2$ and $a_{n+1} = 2a_n - 1$ for Calculate the first five		
	terms of the sequence and express the general termanin		
	terms of n.		

CODE: : 2005PC03

	(OR)		
5.A	Define a function and discuss the concepts of domain, codomain, and	6 M	BTL 4
	range. Given the sets $A = \{1,2,3\}$ and $B = \{a, b, c\}$ define two functions		
	f: $A \rightarrow B$ and g: $B \rightarrow A$. Provide the mappings for both functions and		
5 D	determine $g \circ f$ and $f \circ g$		
5.B	Define the Well-Ordering Principle and discuss its significance in	6 M	BTL 5
	proving mathematical statements. Provide an example to demonstrate		
	the application of the Well-Ordering Principle in a proof.		
	SECTION - III		
6.A	Define normal subgroups in the context of group theory. Prove the	6 M	BTL 4
0.71		0 101	DILT
	criterion for normality and provide examples of groups with normal and		
	non-normal subgroups.		
6.B	Define a Boolean ring and distinguish it from a general ring. Prove that the	6 M	BTL 5
	complement operation in a Boolean algebra satisfies the idempotent law:		
	(OR)		
7.A	Define cyclic groups and discuss the properties of cyclic groups. Provide	6 M	BTL 4
/./1	examples of finite and infinite cyclic groups and prove that every subgroup	0 101	DILT
	a cyclic group is also cyclic.		
7.B	Discuss the representation of Boolean functions using truth tables and	6 M	BTL 5
	algebraic expressions. Consider a Boolean function $f(x, y, z) = x \cdot y + x$		
	$y \cdot z$ Apply the principles of duality to derive an equivalent		
	expression for the complement of f		
	SECTION – IV		
8.A	Define the Inclusion-Exclusion Principle in combinatorics. Explain its	8 M	BTL 4
	significance in solving problems involving overlapping sets.		
	Apply the Inclusion-Exclusion Principle to find the number of integers		
	from 1 to 100 that are divisible by either 2, 3, or 5. Provide a step-by-step		
	solution.		
0 D		4 1 1	DTI 5
8.B	A box contains 5 red balls, 3 blue balls, and 2 green balls. In how many	4 M	BTL 5
	ways can a person select 4 balls from the box? Consider all possibilities.		
	(OR)		
9.A	State the Pigeonhole Principle and discuss its applications in combinatorics	8 M	BTL 4
	In a group of 21 students, each of whom is assigned a unique integer from		
	1 to 20, prove that there are at least two students with consecutive integers.		
0.0		4 1 1	
9.B	Calculate the number of distinct arrangements of the word	4 M	BTL 5
	"COMBINATORICS" considering all the letters.		
	SECTION – V		
10.A	Define graph coloring and explain the concept of chromatic numbers.	6 M	BTL 4
	Prove that every planar graph is 6-colorable.		
10.B		6 M	BTL 5
10.D	Explain the concept of shortest paths in a graph and discuss Dijkstra's	U IVI	DILJ
	algorithm for finding the shortest path.		
	(OR)		
11.A	Define Eulerian walks and Hamiltonian cycles in a graph. Discuss the	6 M	BTL 4
	conditions under which a graph can have an Eulerian walk or Hamiltonian		
	cycle.		
11 D		6 14	
11.B	Define weighted trees and discuss their application in representing prefix	6 M	BTL 5
	codes. Provide an example.		

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JAN/FEB-2024

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

(CSE, CSE-CS, IT)

[Time: 3 Hours]

PART – A

[Max. Marks: 60] (10 x 1 = 10M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer All questions. Each question carries 1 Mark.

	J	Journal	1 M	BTL2	
	Ι	Trial Balance	1M	BTL1	
	Η	Fixed Capital	1M	BTL1	
	G	ARR	1M	BTL1	
	F	Sleeping Partner	1M	BTL1	
	Е	Joint Stock Company	1M	BTL2	
	D	Trade Mark	1M	BTL1	
	С	Break-Even Point	1M	BTL1	
	В	Price Elasticity of Demand	1M	BTL1	
1	А	Concept of Demand	1M	BTL1	
	2. Answer An questions. Each question earnes 1 wark.				

PART – B

 $(5 \times 10 = 60 \text{M})$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 10Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION	- I	

2.A	Define 'Managerial Economics'. Discuss its Nature and Scope.	5M	BTL2		
2.B	Define 'Demand'. What are the determinants of Demand?	5M	BTL2		
(OP)					

	(OR)					
3.A	What are the methods available for Demand Forecasting?	5M	BTL2			
3.B	Briefly explain about different types of Elasticity of Demand.	5M	BTL1			
	SECTION II					

	SECTION - II				
4.A	Discuss about Laws of Returns to Scale with some examples.	5M	BTL2		
4.B	Define 'Cost'. Give a classification of Costs.	5M	BTL1		

(OD)

		(OR)					
5.A	A What are the objectives of Break-Even Analysis?					5M	BTL2
5.B	ABC Company manufactures and	d sells three p	oroducts: Pro	oduct A,B and	C.	5M	BTL4
	The following data have been pro-	ovided by the	company.				
		А	В	С			
	Selling Price	Rs. 100	120	50			
	Variable per unit	<u>Rs. 60</u>	90	<u>40</u>			
	Contribution margin per unit	<u>Rs. 40</u>	_30	<u>10</u>			
	Contribution margin ratio 40% 25% 20%						
	The company sells 5 units of C for every unit of A and 2 units of B for every						
	unit of A. Hence the sales mix is $1:2:5$. The company incurred in Rs						
	1,20,000 total fixed costs. Calculate	ate Multiproc	luct breakev	en point in uni	ts.		

DDE: 22	200H503		R22			SET - 3
		S	ECTION - III	·		
6.A	Outline the various	features of Perfect	t Competition.		5M	BTL3
6.B	What are the differ	ent objectives of Pr	ricing?		5M	BTL2
		5	(OR)			
7.A	Describe the advantages and disadvantages of Sole Proprietorship.					BTL2
					5M 5M	
7.B	What are the different forms of Business Organization?					BTL2
T	SECTION – IV					
8.A	How do you estimate the Working Capital requirements of a Large Scale					BTL3
0.D	Organization? Explain.				514	
8.B	What are the various sources of Raising Capital?				5M	BTL1
			(OR)			
9.A	Examine the advan	tages and drawbac	ks of NPV.		5M	BTL2
9.B	A firm what cost o	f capital is 10% is o	considering two m	utually exclusive	5M	BTL3
	projects X and Y. 7			•	_	
		Year	Profit of X	Profit of Y		
			(Rs.)	(Rs.)		
	Cost	0	70,000	70,000		
	Cash Inflows	1	10,000	50,000		
		2 3	20,000	40,000		
		<u> </u>	<u>30,000</u> 45,000	20,000 10,000		
		5	60,000	10,000		
	State which project	-	,	,		
	State which project		ECTION – V			
10.A	What are the advar	ntages of Double E	ntry System?		5M	BTL2
10.B	Define 'Accounting	-		ing?	5M	BTL2
		-	(OR)			
11.A	What are the objec	tives of Financial S	Statement Analysis	?	5M	BTL
11.B	The following trial	balance have been	taken out from th	e books of ABC a	is 5M	BTL
	on 31 st December,				nt	
	for the year ended	31-12-2017 and a b			-	
	Particulars		Dr.(Rs.)	Cr. (Rs.)	_	
	Plant and Machin Opening Stock	ery	2,0000	-		
	Purchases		1,60,000		_	
	Building		1,80,000			
	Carriage Inward		3,400	-		
	Carriage Outward	1	5,000			
	Wages		32,000			
	Sundry Debtors		1,00,000			
	Salaries		24,000	-	_	
	Furniture		36,000		41	
	Trade Expenses		12,000			
	Discount on Sales	5	1,900			
	Advertisement		5,000			

CODE: 2200H503	R22		SET - 3
Bad Debts	1,800		
Drawings	10,000		
Bills Receivables	50,000		
Insurance	4,400		
Bank Balances	20,000		
Sales		5,80,000	
Interest Received		4,000	
Sundry Creditors		50,000	
Bank Loan		1,00,000	
Discount on Purchases		2,000	
Capital		1,71,500	
Total Account Balance	9,07,500	9,07,500	
Closing Stock is Valued at Rs. 90,000			

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JAN/FEB-2024

OPERATING SYSTEMS

(CSE, IT)

[Time: 3 Hours]

PART – A

[Max. Marks: 60] (10x 1 = 10M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer All Questions. Each question carries 1Mark.

$PART - R \qquad (5 \times 10 -$				
		with servicing an interrupt?		
	J	What are the various kinds of performance overhead associated	1 M	BTL2
	Ι	Write about free – space management.	1M	BTL2
	Η	What is page fault and how it is handled?	1M	BTL3
	G	What is paging and swapping?	1M	BTL1
	F	Define deadlock.	1M	BTL1
	E	Explain the usage and implementation of semaphores.	1M	BTL2
	D	Compare and contrast thread and process.	1M	BTL4
	С	What do you mean by PCB?	1M	BTL2
		approach?		
	В	What are the advantages and disadvantages of using layered	1M	BTL2
1	А	List the objectives of an operating system.	1M	BTL1

PART – B

$(5 \times 10 = 50 \text{M})$

- Note: 1. This Part consists of 10 QUESTIONS
 - 2. Answer any 1 question from each Section. Each question carries 10 Marks.
 - 3. Illustrate your answers with NEAT sketches wherever necessary.

	SECTION - I		
2.A	Discuss the services provided by the operating system for efficient	5M	BTL2
	system operation.		
2.B	With a neat diagram, explain the layered structure of UNIX operating	5M	BTL2
	system.		
	(OR)		

3.A	Write about the taxonomy of operating systems.	5M	BTL2	
3.B	What is meant by system call? Discuss about types of system calls.	5M	BTL2	
SECTION - II				

	SECTION - II							
4.A	Distinguish between	5M	BTL4					
	i) Process and Program							
	ii) Multiprogramming and multiprocessing							
	iii) Job scheduling and CPU scheduling							
4.B	Explain briefly about various multi-threading models with a neat	5M	BTL2					
	diagram.							
	(OR)							

			(0.	I ()			
5.A	Consider the t	rst time given in	5M	BTL3			
	milliseconds:						
		Process	Burst Time	Priority			
		P1	10	3			
		P2	1	1			

DE: 2 2	205PC02)		R22)		SET - 1
		P3	2	3			
		P4	1	4			
		P5	5	2			
	Processes are a						
	· · · · · · · · · · · · · · · · · · ·				ng FCFS, SJF,		
	-		ority and Rou	and Robin	(Quantum = 1)		
	schedul	-	•,• ,•	1 /			
			•	turnaround	l time for each		
5.B		ing algorith		al time cohe	Julina	5M	BTL2
Э.Б	Discuss the iss	ues in muni			lunng	JIVI	DILZ
	Γ			ION - III			
6.A			-		re the minimum	5M	BTL3
	-		be satisfied by	a solution t	o critical section		
(D	problem? Discu		11 0 5		1	<u></u>	DTI 0
6.B				Discuss the so	olution to Dining	5M	BTL3
	philosopher's p	broblem usin	-				
7.A	What is reade	ma unita	(OR)	be considered as	5M	BTL3
/.A	synchronization		-			JIVI	DILS
7.B		-	.		oidance? Explain	5M	BTL2
/.D	with suitable ex		nat is its use in	deadlock av		5111	DIL2
	with suitable ex	ampie.	SECT	ON – IV			
8.A	Explain the d	ifference be			ion and Internal	5M	BTL4
	fragmentation.			-			
8.B	Consider the fo	llowing pag	e reference stri	ng:		5M	BTL3
	1,2,3,4,2,1,5,6,	2,1,2,3,7,6,3	3,2,1,2,3,6				
				e are 4 page	frames, using the		
	following page						
	i) LRU ii)						
0.4		1 14	(OR)		614	
9.A		•	1 1		onverting virtual	5M	BTL2
9.B	addresses to physical addresses with a neat diagram.What is demand paging? Why it is called as lazy swappers? Explain in					5M	BTL2
9.D	detail.						DILL
	uotuiit		SECT	ION – V			
10.A	Suppose that the	he head of n			acks numbered 0	5M	BTL3
			-		has just finished		_
			e queue request		5		
	86, 147, 91, 17						
				atisfy these	requests for the		
	following disk						
	i) FCFS	,					
10.B	Discuss in deta	il about diff	erent file access	s methods.		5M	BTL2
	1		()	OR)			I
11.A	What are the	advantages	and disadvan	tages of sup	porting memory	5M	BTL2
	mapped I/O to	device contra	rol registers? Ex	kplain.			
11.B	Explain differe	ent allocation	n methods for a	llocating disk	space in detail.	5M	BTL2
	1		1				

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

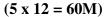
B.TECH II YEAR I SEMESTER SUPPLY EXAMINATIONS, JAN/FEB-2024

OPERATING SYSTEMS

(CSE, IT)

[Time: 3 Hours]

PART – A


[Max. Marks: 70] (5x 2 = 10M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer ANY 5 Questions. Each question carries 2Marks.

$\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{T} \mathbf{D} \qquad (5 \mathbf{v} 12 - \mathbf{60M})$							
	Н	What is page fault and how it is handled?	2M	BTL3			
	G	What is paging and swapping?	2M	BTL1			
	F	Define deadlock.	2M	BTL1			
		with servicing an interrupt?.					
	E	What are the various kinds of performance overhead associated	2M	BTL2			
	D	Compare and contrast thread and process.	2M	BTL4			
	С	What do you mean by PCB?	2M	BTL2			
		approach?					
	В	What are the advantages and disadvantages of using layered	2M	BTL2			
1	А	List the objectives of an operating system.	2M	BTL1			

PART – B

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Discuss the services provided by the operating system for efficient	6M	BTL2				
	system operation.						
2.B	With a neat diagram, explain the layered structure of UNIX operating	6M	BTL2				
	system.						
	(OR)						

3.A	Write about the taxonomy of operating systems.	6M	BTL2
3.B	What is meant by system call? Discuss about types of system calls.	6M	BTL2

SECTION - II

			SLCII							
4.A	Distinguish bet	6M	BTL4							
	i) Pro	cess and Pro	gram							
	ii) Mu	ltiprogramm	ing and multipro	ocessing						
	iii) Job									
4.B	Explain briefl	Explain briefly about various multi-threading models with a neat								
	diagram.									
5.A	Consider the f	6M	BTL3							
	milliseconds:									
		Process	Burst Time	Priority						
		P1	10	3						

Process	Burst Time	Priority
P1	10	3
P2	1	1
P3	2	3
P4	1	4

DE: 2	<u>005PC02</u> (R20)		SET - 2				
	P5 5 2 Processes are arrived in P1, P2, P3, P4, P5 order at time 0. i) i) Draw Gantt charts to show execution using FCFS, SJF, nonpreemptive priority and Round Robin (Quantum = 1) scheduling. ii) Also calculate waiting time and turnaround time for each scheduling algorithm.						
5.B	Discuss the issues in multiprocessor and real-time scheduling	6M	BTL2				
	SECTION - III		I				
6.A	What is a critical section? Give examples. What are the minimum requirements that should be satisfied by a solution to critical section problem? Discuss briefly.		BTL				
6.B	What is Dining Philosophers problem? Discuss the solution to Dining philosopher's problem using monitors.	g 6M	BTL:				
	(OR)						
7.A	What is readers – writers problem? How it can be considered as synchronization problem? Explain its solution with semaphore.	s 6M	BTL:				
7.B	What is a Safe state and what is its use in deadlock avoidance? Explain with suitable example.	n 6M	BTL				
	SECTION – IV						
8.A	Explain the difference between External fragmentation and Interna fragmentation. How to solve the fragmentation problem using paging?	1 6M	BTL				
8.B	Consider the following page reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 Find out the number of page faults if there are 4 page frames, using the following page replacement algorithm i) LRU ii) FIFO iii) Optimal	6M e	BTL				
	(OR)						
9.A	Define Virtual Memory. Explain the process of converting virtua addresses to physical addresses with a neat diagram.	1 6M	BTL				
9.B	What is demand paging? Why it is called as lazy swappers? Explain in detail.	n 6M	BTL				
10.A	SECTION – V Suppose that the head of moving head disk with 200 tracks numbered (to 199 is currently serving the request at track 143 and has just finished a request at track 125. If the queue request is kept in FIFO order is: 86, 147, 91, 177, 94, 150, 102, 175, 130. What is the total head movement to satisfy these requests for the following disk scheduling algorithms? i) FCFS ii)SSTF	1	BTL				
10.B	Discuss in detail about different file access methods.	6M	BTL				
	(OR)		<u> </u>				
11 1	A What are the advantages and disadvantages of supporting memory						
11.A	mapped I/O to device control registers? Explain.						

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER REGULAR EXAMINATIONS, JANUARY-2024

PROBABILITY AND STATISTICS

(COMMON TO CSE, CSE-CS, IT)

[Time: 3 Hours]

$\mathbf{PART} - \mathbf{A}$

[Max. Marks: 60] (10x 1 = 10M)

Note: 1. This Part consists of 10 QUESTIONS

2. Answer All Questions. Each question carries 1Mark.

BWhat is a conditional probability?1MBTL-1CWhy is normal distribution highly used in statistical theory of Communications?1MBTL-1DDefine standard normal random variable.1MBTL-1EWhat is purposive sampling? Give an example.1MBTL-1FDefine standard error.1MBTL-1GDefine critical region.1MBTL-1HExplain type-I and type-II errors in testing of hypothesis.1MBTL-5IDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MBTL-6JHow is contingency table (r x c table) useful in Chi-square test for independence of attributes?1MBTL-1	1	А	When is a set of events said to be exhaustive?	1M	BTL-1
Communications?IMDDefine standard normal random variable.1MEWhat is purposive sampling? Give an example.1MFDefine standard error.1MGDefine critical region.1MHExplain type-I and type-II errors in testing of hypothesis.1MIDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MJHow is contingency table (r x c table) useful in Chi-square test for H1M		В	What is a conditional probability?	1M	BTL-1
DDefine standard normal random variable.1MBTL-1EWhat is purposive sampling? Give an example.1MBTL-1FDefine standard error.1MBTL-1GDefine critical region.1MBTL-1HExplain type-I and type-II errors in testing of hypothesis.1MBTL-5IDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MBTL-6JHow is contingency table (r x c table) useful in Chi-square test for useful in Chi-square test for1MBTL-1		С	Why is normal distribution highly used in statistical theory of	1M	BTL-1
EWhat is purposive sampling? Give an example.1MBTL-1FDefine standard error.1MBTL-1GDefine critical region.1MBTL-1HExplain type-I and type-II errors in testing of hypothesis.1MBTL-5IDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MBTL-6JHow is contingency table (r x c table) useful in Chi-square test for I M1MBTL-1			Communications?		
FDefine standard error.1MBTL-1GDefine critical region.1MBTL-1HExplain type-I and type-II errors in testing of hypothesis.1MBTL-5IDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MBTL-6JHow is contingency table (r x c table) useful in Chi-square test for useful in Chi-square test for1MBTL-1		D	Define standard normal random variable.	1M	BTL-1
GDefine critical region.1MBTL-1HExplain type-I and type-II errors in testing of hypothesis.1MBTL-5IDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MBTL-6JHow is contingency table (r x c table) useful in Chi-square test for I M1MBTL-1		E	What is purposive sampling? Give an example.	1M	BTL-1
HExplain type-I and type-II errors in testing of hypothesis.1MBTL-5IDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MBTL-6JHow is contingency table (r x c table) useful in Chi-square test for I M1MBTL-1		F	Define standard error.	1M	BTL-1
IDiscuss degrees of freedom with respect to Chi-square test for good ness of fit.1MBTL-6JHow is contingency table (r x c table) useful in Chi-square test for IM1MBTL-1		G	Define critical region.	1M	BTL-1
good ness of fit. J J How is contingency table (r x c table) useful in Chi-square test for 1M BTL-1		Н	Explain type-I and type-II errors in testing of hypothesis.	1M	BTL-5
J How is contingency table (r x c table) useful in Chi-square test for 1M BTL-1		Ι	Discuss degrees of freedom with respect to Chi-square test for	1M	BTL-6
			good ness of fit.		
independence of attributes?		J	How is contingency table (r x c table) useful in Chi-square test for	1M	BTL-1
			independence of attributes?		

PART – B

 $(5 \times 10 = 50M)$

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 10 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

	SECTION - I		
2.A	Six dice are thrown 729 times. How many times do you expect at least	5M	BTL3
	three dice to show a five or six?		
2.B	A bag contains 5 balls and it is known how many of them are white.	5M	BTL1
	Two balls are drawn at random from the bag and they are noted to be		
	white. What is the chance that all the balls in the bag are white?		
	(OR)		

()												
3.A	A rando	m v	ariat	ole X l	nas the	e follo	wing	probał	oility distri	bution	5M	BTL1
	Find (i) the value of 'k'											
	(ii) P(1.	(ii) $P(1.5 \le X \le 4.5)$										
	X 0 1 2 3 4 5 6 7											
	P(X)	0	Κ	2K	2K	3K	K ²	$2K^2$	$7K^2+K$			
3.B	Explain the mean and variance of the Binomial distribution									5M	BTL5	

SECTION - II

4.A	A Continuous random variable X has a probability density function $f(x) =$	5M	BTL1
	$3x^2$, $0 \le x \le 1$. Find 'a' and 'b' such that (i) $P(X \le a) = P(X > a)$; and		
	(ii) $P(X > b) = 0.05$.		
4.B	Explain the main features of normal probability distribution?	5M	BTL5
	Can a normal probability distribution be fully determined		
	if we know its mean and standard deviation.		

CODE: 2200BS04

Y

2.4

3

5.A

5.B

R22

5

6

SET - 3

BTL5

BTL3

5M

5M

				(OR)					
Explain th	e method o	of least squ	lares.						
Develop (Develop (Fit) a straight line to the following data								
Х	1	2	3	4	6	8			

4

3.6

SECTION - III

	SECTION III		
6.A	A random sample is taken from N (30, 12).	5M	BTL1
	How large a sample should be taken if the sample mean is to lie between		
	25 and 35 with probability 0.95.		
6.B	Let $S = \{1, 5, 6, 8\}$. Find the probability distribution of the sample mean	5M	BTL1
	For random samples of size 2 drawn without replacement.		
	(OR)		
7.A	What are parameters and statistic?	5M	BTL1
	Write the formulae for calculating the variance of sampling distribution		
	Of means for the sampling cases of (i) with replacement (ii) without		
	replacement.		
7.B	Discuss about sampling distribution?	5M	BTL6

SECTION - IV

8.A	A bag contains defective article, the exact number of which is not known. A sample of 100 from the bag gives 10 defective articles. Find the limits for the proportion of defective articles in the bag.	5M	BTL1
8.B	Discuss:-Null Hypothesis, Type-I error and Type-II error.	5M	BTL6

(OR)

9.A	Interpret the working procedure for testing of hypothesis.	5M	BTL5
9.B	According to the norms established for a mechanical aptitude test, persons who are 18 years old have an average height of 73.2 with a standard deviation of 8.6. If 45 randomly selected persons of that age averaged 76.7.Test the null hypothesis $m = 73.2$ against the alternative hypothesis $m > 73.2$, at the 0.01 level of significance.	5M	BTL6

SECTION - V

10.A	List the assumptions of t-test and F-test.	5M	BTL4
10.B	Test runs with 6 models of an experimental engine that they operated for 24, 28, 21, 23, 32, and 22 minutes with a gallon of a certain kind of fuel. If the probability of a type-1 error is to be at most 0.01. Interpret, is this evidence against a hypothesis that on the average this kind of engine will operate for at least 29 minutes per gallon with this kind of fuel? Assume normality.	5M	BTL5

(OR)

11.A	A sample of 6 persons in an office showed an average of 10, 12, 8, 9, 16	5M	BTL5
	and 5 days of taking non-vegetarian food in a month. Estimate the average		
	level of taking non-vegetarian food in a month in the whole office at 90%		
	level of confidence.		
11.B	Find the 99% confidence interval for the mean of the samples	5M	BTL1
	15, 15, 16.4, 17.2, 16.8 and 18.4.		

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - - ISO 9001:2015 Certified)

Accredited by NBA & NAAC – 'A' Grade

NIRF India Ranking, Accepted by MHRD, Govt. of India

B.TECH II YEAR I SEMESTER SUPPLY EXAMINATIONS, JANUARY-2024

PROBABILITY AND STATISTICS

(COMMON TO CSE, CSE-CS, IT)

[Time: 3 Hours]

PART - A

[Max. Marks: 70] (5x 2= 10M)

Note: 1. This Part consists of 8 QUESTIONS

2. Answer ANY 5 Questions. Each question carries 21 Mark.

		PART – B	(5×1)	2 = 60M
	Н	Explain type-I and type-II errors in testing of hypothesis.	2M	BTL-5
	G	Define critical region.	2M	BTL-1
	F	Define standard error.	2M	BTL-1
	E	What is purposive sampling? Give an example.	2M	BTL-1
	D	Define standard normal random variable.	2M	BTL-1
		Communications?		
	С	Why is normal distribution highly used in statistical theory of	2M	BTL-1
	В	What is a conditional probability?	2M	BTL-1
1	А	When is a set of events said to be exhaustive?	2M	BTL-1

Note: 1. This Part consists of 10 QUESTIONS

2. Answer any 1 question from each Section. Each question carries 12 Marks.

3. Illustrate your answers with NEAT sketches wherever necessary.

SECTION - I

2.A	Six dice are thrown 729 times. How many times do you expect at least	6M	BTL3
	three dice to show a five or six?		
2.B	A bag contains 5 balls and it is known how many of them are white.	6M	BTL1
	Two balls are drawn at random from the bag and they are noted to be		
	white. What is the chance that all the balls in the bag are white?		
		•	

								(OK)				
3.A	A rando	A random variable X has the following probability distribution										BTL1
	Find (i) the value of 'k'											
	(ii) $P(1.5 \le X \le 4.5)$											
	Х	0	1	2	3	4	5	6	7			
	P(X)	0	Κ	2K	2K	3K	\mathbf{K}^2	$2K^2$	$7K^2+K$			
3.B	Explain	the	mea	n and	variar	nce of	the Bi	inomia	l distribut	ion	6M	BTL5
		Find (i) (ii) P(1. X P(X)	Find (i) the (ii) P(1.5 < 2	Find (i) the value (ii) $P(1.5 < X < X)$ X 0 P(X) 0	Find (i) the value of '4(ii) $P(1.5 < X < 4.5)$ X0P(X)0K2K	Find (i) the value of 'k'(ii) $P(1.5 < X < 4.5)$ X0123P(X)0K2K2K	Find (i) the value of 'k'(ii) $P(1.5 < X < 4.5)$ X01234P(X)0K2K2K3K	Find (i) the value of 'k' (ii) $P(1.5 < X < 4.5)$ X 0 1 2 3 4 5 P(X) 0 K 2K 2K 3K K ²	3.AA random variable X has the following probat Find (i) the value of 'k' (ii) $P(1.5 < X < 4.5)$ X0123456P(X)0K2K2K3KK²2K²	3.A A random variable X has the following probability distribution Find (i) the value of 'k' (ii) P(1.5 < X < 4.5) X = 0 1 2 3 4 5 6 7 P(X) 0 K 2K 2K 3K K ² 2K ² 7K ² +K K	3.AA random variable X has the following probability distributionFind (i) the value of 'k'(ii) $P(1.5 < X < 4.5)$ X0I23456P(X)0K2K2K3KK ² 2K ² 7K ² +K	3.AA random variable X has the following probability distribution6MFind (i) the value of 'k' (ii) $P(1.5 < X < 4.5)$ \overline{X} 01234567 \overline{X} 01234567 $P(X)$ 0K2K2K3KK²2K²7K²+K

SECTION - II

4.A	A Continuous random variable X has a probability density function	6M	BTL1
	$f(x) = 3x^2$, $0 \le x \le 1$. Find 'a' and 'b' such that (i) $P(X \le a) = P(X > a)$; and		
	(ii) P($X > b$) = 0.05.		
4.B	Explain the main features of normal probability distribution?	6M	BTL5
	Can a normal probability distribution be fully determined		
	if we know its mean and standard deviation.		

(OR)

5.A	Explain the	6M	BTL5							
5.B	Develop	6M	BTL3							
	Х	1	2	3	4	6	8			

CODE: 2000BS04					R	20		SET - 3
	Y	2.4	3	3.6	4	5	6	

SECTION - III

6.A	A random sample is taken from N (30, 12).	6M	BTL1
	How large a sample should be taken if the sample mean is to lie between		
	25 and 35 with probability 0.95.		
6.B	Let $S = \{1, 5, 6, 8\}$. Find the probability distribution of the sample mean	6M	BTL1
	For random samples of size 2 drawn without replacement.		
	(OR)	•	·

7.A	What are parameters and statistic?	6M	BTL1
	Write the formulae for calculating the variance of sampling distribution		
	Of means for the sampling cases of (i) with replacement (ii) without		
	replacement.		
7.B	Discuss about sampling distribution?	6M	BTL6

SECTION - IV

SECTION IV			
8.A	A bag contains defective article, the exact number of which is not known.	6M	BTL1
	A sample of 100 from the bag gives 10 defective articles. Find the limits		
	For the proportion of defective articles in the bag.		
8.B	Discuss:-Null Hypothesis, Type-I error and Type-II error.	6M	BTL6

	(OR)			
9.A	Interpret the working procedure for testing of hypothesis.	6M	BTL5	
9.B	According to the norms established for a mechanical aptitude test, persons who are 18 years old have an average height of 73.2 with a standard deviation of 8.6. If 45 randomly selected persons of that age averaged 76.7.Test the null hypothesis $m = 73.2$ against the alternative hypothesis $m > 73.2$, at the 0.01 level of significance.	6M	BTL6	

SECTION - V

10.A	List the assumptions of t-test and F-test.	6M	BTL4
10.B	Test runs with 6 models of an experimental engine that they operated for	6M	BTL5
	24, 28, 21, 23, 32, and 22 minutes with a gallon of a certain kind of fuel. If		
	the probability of a type-1 error is to be at most 0.01. Interpret, is this		
	evidence against a hypothesis that on the average this kind of engine will		
	operate for at least 29 minutes per gallon with this kind of fuel?		
	Assume normality.		
(OR)			

11.A	A sample of 6 persons in an office showed an average of 10, 12, 8, 9, 16	6M	BTL5
	and 5 days of taking non-vegetarian food in a month. Estimate the average		
	level of taking non-vegetarian food in a month in the whole office at 90%		
	level of confidence.		
11.B	Find the 99% confidence interval for the mean of the samples	6M	BTL1
	15, 15, 16.4, 17.2, 16.8 and 18.4.		